Homogeneous and heterogeneous oligomerization reactions of olefins with unbridged metallocene catalysts

Authors

  • Helmut Alt Laboratorium für Anorganische Chemie, Universität Bayreuth, Postfach 101251, D-95440 Bayreuth, Germany
  • Tanja Ritter Laboratorium für Anorganische Chemie, Universität Bayreuth, Postfach 101251, D-95440 Bayreuth, Germany
Abstract:

1-Pentene, respectively 1-hexene, were reacted with 13 homogeneous metallocene catalysts to give linear oligomerization products, predominantly dimers, with selectivities above 90%. The product distributions of the codimerization reactions of 1-pentene with 1-hexene reflected a binomial behaviour. Therefore, the ratio for dimers is 1:2:1 (C10:C11:C12) while the trimers (pentadecenes up to octadecenes) show a proportion of 1:3:3:1. By changing the ratio of the 1-pentene/1-hexene mixture, the binomial distribution switched to the side of products of the higher concentrated monomer. Even when using methyl branched olefins, the binomial product distribution could be observed. Alkenes with an internal double bond could not be dimerized under these conditions. The reactions with olefins containing a methyl group in β-position, a tert-butyl group or a neopentyl group failed. Addition of appropriate additives like tributylphosphine or aluminum powder raised both the activities and the selectivities for dimers, which means that the fraction of undecenes obtained from the codimerization reactions of 1-pentene and 1-hexene increased.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Observation of different catalytic activity of various 1-olefins during ethylene/1-olefin copolymerization with homogeneous metallocene catalysts.

This research aimed to investigate the copolymerization of ethylene and various 1-olefins. The comonomer lengths were varied from 1-hexene (1-C₆) up to 1-octadecene (1-C₁₈) in order to study the effect of comonomer chain length on the activity and properties of the polymer in the metallocene/MAO catalyst system. The results indicated that two distinct cases can be described for the effect of 1-...

full text

Converting homogeneous to heterogeneous catalysts

Homogeneous transition metal complex catalysts for organic industrial processes are converted to catalysts which are heterogeneous with respect to the reactants, and which have substantially equal catalytic activity to the homogeneous catalysts. This is done by reacting a normally homogeneous transition metal complex catalyst with a metal bridging ligand which substantially duplicates the ligan...

full text

Development of homogeneous and heterogeneous asymmetric catalysts for practical enantioselective reactions*

Two strategies for the development of practical asymmetric catalysis have been discussed in this article. The first part of this article focuses on the design and screening of highly efficient and enantioselective chiral catalysts for asymmetric hydrogenation reactions employing combinatorial approach. The second part presents a conceptually new strategy (i.e., “self-supporting” approach) for t...

full text

Intelligent catalysts for ethylene oligomerization and polymerization

EEthylene polymerization catalysts became available in an enormous variety. The challenge in this research is to find catalysts that are able to connect ethylene molecules in such a way that not only linear chains are produced but variations like branched materials that possess very interesting mechanical properties like linear low density polyethylene (LLDPE). In this contribution, three diffe...

full text

A Review on Heterogeneous Solid Catalysts and Related Catalytic Mechanisms for Epoxidation of Olefins with H2O2

The epoxidation reaction using heterogeneous solid catalysts with H2O2 as oxidants are environmentally friendly routes to produce extensively useful epoxides which are traditionally obtained from capital-intensive or environmentally polluted processes. In this paper, various types of solid catalysts for the epoxidation of olefins with H2O2 as oxidants are reviewed. The efficient catalysts repor...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 2

pages  107- 116

publication date 2019-06-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023